Likewise percentile, a quartile instead cuts the data in 4 equal parts. Use GroupBy.transform and Series.between, this is faster: Thanks for contributing an answer to Stack Overflow! Its an extremely useful metric that most people know how to calculate but very few know how to use effectively. how much the individual data points are spread out from the mean. import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns, df = pd.read_csv(placement.csv)df.sample(5), import warningswarnings.filterwarnings(ignore)plt.figure(figsize=(16,5))plt.subplot(1,2,1)sns.distplot(df[cgpa])plt.subplot(1,2,2)sns.distplot(df[placement_exam_marks])plt.show(), print(Highest allowed,df[cgpa].mean() + 3*df[cgpa].std())print(Lowest allowed,df[cgpa].mean() 3*df[cgpa].std())Output:Highest allowed 8.808933625397177Lowest allowed 5.113546374602842, df[(df[cgpa] > 8.80) | (df[cgpa] < 5.11)], new_df = df[(df[cgpa] < 8.80) & (df[cgpa] > 5.11)]new_df, upper_limit = df[cgpa].mean() + 3*df[cgpa].std()lower_limit = df[cgpa].mean() 3*df[cgpa].std(), df[cgpa] = np.where(df[cgpa]>upper_limit,upper_limit,np.where(df[cgpa]
Snapchat Phishing Page, How Does The Lady In Black Function In The Novel?, Taiwan Chocolate Castella Cake Recipe, Articles R